WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-I Examination, 2021

Mathematics

Paper: MTMA-II

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

Answer any three questions from the following

1. State and prove Cantor's theorem on nested intervals.
2. (a) Let A and B be two non-empty bounded sets of real numbers and $C=\{x+y: x \in A, y \in B\}$. Show that $\sup C=\sup A+\sup B$.
(b) Show that every bounded sequence has a convergent subsequence.
3. (a) For any subset $A \subset R$, prove that $\left(A^{\prime}\right)^{\prime} \subset A^{\prime}$ where A^{\prime} denotes the set of all limit points of A.
(b) For any two subsets $A, B \subset R$, show that the equality $(A \cap B)^{\prime}=A^{\prime} \cap B^{\prime}$ does not hold in general.
4. (a) State Cauchy's second limit theorem. Using it find the limit
$\lim _{n \rightarrow \infty} \frac{\{(n+1)(n+2) \ldots(2 n)\}^{\frac{1}{n}}}{n}$.
(b) Evaluate : $\lim _{x \rightarrow \infty} \frac{[x]}{x}$, if exists.
5. (a) Show that the sequence $\left\{x_{n}\right\}$ converges to 1 where $x_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}$.
(b) Let A be a nonempty subset of R and $d(x, A)=\inf \{|x-y|: y \in A\}$. Prove that $d(x, A)=0$ if and only if $x \in \bar{A}$.
6. (a) Prove that a convergent sequence of real numbers is a Cauchy sequence.
(b) Show that the $n \geq 1$.
sequence $\left\{x_{n}\right\}$ is not convergent where $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$,
7. (a) Prove that union of two denumerable sets is denumerable.
(b) Prove that no nonempty proper subset of R is both open and closed in R.
8. (a) Let $D \subset R$ and f, g, h, be three function defined on D to R. Let $c \in D^{\prime}$. If $f(x) \leq g(x) \leq h(x)$ for all $x \in D-\{c\}$ and if $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=l$ then prove that $\lim _{x \rightarrow c} g(x)=l$.
(b) Show that $\lim _{x \rightarrow 0} \sqrt{x} \sin \frac{1}{x}=0$.
9. Let $t: R \rightarrow R$ be a continuous function and $f(x+y)=f(x)+f(y)$ for all $x, y \in R$. If $f(1)=k$ prove that $f(x)=k x$ for all $x \in R$.

GROUP-B

10. Answer any two questions from the following:
(a) Evaluate $\int_{0}^{a} \frac{d x}{x+\sqrt{a^{2}-x^{2}}}$.
(b) If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$, prove that $I_{n}=\frac{1}{n-1}-I_{n-2}$

Hence find the value of I_{5}.
(c) (i) Prove that $\frac{B(m, n+1)}{n}=\frac{B(m, n)}{m+n}$
(ii) Evaluate $\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{6} x d x$.
11. Answer any three questions from the following:
(a) Find the envelope of the family of ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where the parameters a, b are connected by the relation $a+b=c, c$ being a nonzero constant.
(b) Find all the asymptotes of the curve $x^{2} y+x y^{2}+x y+y^{2}+3 x=0$.
(c) Show that the curve $(x+y)^{3}-\sqrt{2}(y-x+2)=0$ has a double point at $(-1,1)$. Find the equation of the tangents at that point and identify the nature of the double point.
(d) If ρ_{1} and ρ_{2} are the radii of curvature at the ends of conjugate diameter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $\rho_{1}^{2 / 3}+\rho_{2}^{2 / 3}=\frac{a^{2}+b^{2}}{(a b)^{2 / 3}}$.
(e) Determine the pedal equation of $a>b$.

GROUP-C

Answer any one question from the following
12.(a) Examine whether the equation $(\cos y+y \cos x) d x+(\sin x-x \sin y) d y=0$ is
(b) Find the orthogonal trajectories of the cardiodes $r=a(1-\cos \theta)$.
13.(a) Reduce the equation $x^{2}(y-p x)=p^{2} y$ to Clairaut's form by putting $x^{2}=u$ and $y^{2}=v$. Hence obtain the general and singular solution.
(b) Solve the following differential equation $y=(1+p) x+a p^{2}$.
14.(a) Solve by the method of undetermined coefficient: $\left(D^{2}+4\right) y=x^{2} \sin 2 x$.
(b) Solve : $\left(x^{2} D^{2}-3 x D+5\right) y=x^{2} \sin (\log x)$. 5
15.(a) Solve by the method of variant of parameters:

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{e^{x}}{1+e^{x}}
$$

(b) Solve by reducing to a linear equation: $\left(1+x^{2}\right) \frac{d y}{d x}-4 x^{2} \cos ^{2} y+x \sin 2 y=0$.
16.(a) Solve: $x^{4} \frac{d^{3} y}{d x^{3}}+3 x^{3} \frac{d^{2} y}{d x^{2}}-2 x^{2} \frac{d y}{d x}+2 x y=\log x$.
(b) Solve: $\left(\frac{d^{2} y}{d x^{2}}+y\right) \cot x+2\left(\frac{d y}{d x}+y \tan x\right)=\sec x$ by reducing it to normal form.
17.(a) Solve by the method of operational factors:

$$
x \frac{d^{2} y}{d x^{2}}+(x-1) \frac{d y}{d x}-y=x^{2}
$$

(b) Solve: $\quad(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$ by changing the independent variable.

GROUP-D

Answer any one question from the following
18. If $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \times \vec{b} \times \vec{c}=\frac{1}{2} \vec{b}$, find the angles which \vec{a} makes with \vec{b} and $\vec{c} ; \vec{b}, \vec{c}$ being non parallel.
12.(a) Examine whether the equation $(\cos y+y \cos x) d x+(\sin x-x \sin y) d y=0$ is
(b) Find the orthogonal trajectories of the cardiodes $r=a(1-\cos \theta)$.
13.(a) Reduce the equation $x^{2}(y-p x)=p^{2} y$ to Clairaut's form by putting $x^{2}=u$ and $y^{2}=v$. Hence obtain the general and singular solution.
(b) Solve the following differential equation $y=(1+p) x+a p^{2}$.
14.(a) Solve by the method of undetermined coefficient: $\left(D^{2}+4\right) y=x^{2} \sin 2 x$.
(b) Solve : $\left(x^{2} D^{2}-3 x D+5\right) y=x^{2} \sin (\log x)$.
15.(a) Solve by the method of variant of parameters:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{e^{x}}{1+e^{x}} . \tag{5}
\end{equation*}
$$

(b) Solve by reducing to a linear equation: $\left(1+x^{2}\right) \frac{d y}{d x}-4 x^{2} \cos ^{2} y+x \sin 2 y=0$.
16.(a) Solve: $x^{4} \frac{d^{3} y}{d x^{3}}+3 x^{3} \frac{d^{2} y}{d x^{2}}-2 x^{2} \frac{d y}{d x}+2 x y=\log x$.
(b) Solve: $\left(\frac{d^{2} y}{d x^{2}}+y\right) \cot x+2\left(\frac{d y}{d x}+y \tan x\right)=\sec x$ by reducing it to normal form.
17.(a) Solve by the method of operational factors:

$$
x \frac{d^{2} y}{d x^{2}}+(x-1) \frac{d y}{d x}-y=x^{2}
$$

(b) Solve: $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \log (1+x)$ by changing the independent variable.

GROUP-D

Answer any one question from the following

18. If $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \times \vec{b} \times \vec{c}=\frac{1}{2} \vec{b}$, find the angles which \vec{a} makes with \vec{b} and $\vec{c} ; \vec{b}, \vec{c}$ being non parallel.

B.Sc./Part-I/Hons./MTMA-II/2021

19. Show by vector method, that the straight line joining the mid points of two nonparallel sides of a trapezium are parallel to the parallel sides and half of their sum in length.
20. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, prove that $\left[\begin{array}{lll}\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}\end{array}\right]=2\left[\begin{array}{ll}\vec{a} & \vec{b} \\ \vec{c}\end{array}\right]$.
21.(a) Forces \vec{P}, \vec{Q} act at O and have a resultant \vec{R}. If any transversal cuts lines of
(b) A particle acted on by constant forces $4 \hat{i}+5 \hat{j}-3 \hat{k}$ and $3 \hat{i}+2 \hat{j}+4 \hat{k}$ is displaced from the point $\hat{i}+3 \hat{j}+\hat{k}$ to the point $2 \hat{i}-\hat{j}-3 \hat{k}$. Find the total work done by the forces.
22.(a) Find the moment of the force $4 \hat{i}+2 \hat{j}+\hat{k}$ acting at a point $5 \hat{i}+2 \hat{j}+4 \hat{k}$ about the point $3 \hat{i}-\hat{j}+3 \hat{k}$.
(b) Find the vector equation of the plane passing through the origin and parallel to the vectors $2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $4 \hat{i}-5 \hat{j}+4 \hat{k}$.
23.(a) Find the constants a, b, c so that

$$
\begin{aligned}
& \text { Find the constants } a, b, c \text { so that } \\
& \vec{V}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k} \text { is irrotational. }
\end{aligned}
$$

(b) Find a so that $\bar{V}=3 x \hat{i}+(x+y) \hat{j}-a x \hat{k}$ is solenoidal.
24. Show that the necessary and sufficient condition that a non-zero vector \bar{u} always remains parallel to a fixed line is that $\vec{u} \times \frac{d \vec{u}}{d t}=\overrightarrow{0}$.
25.(a) If $f(r)$ is differentiable, then prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.
(b) Show that $\nabla \times\left(\frac{\vec{a} \times \vec{r}}{r^{3}}\right)=-\frac{\vec{a}}{r^{3}}+\frac{3(\vec{a} \cdot \vec{r}) \vec{r}}{r^{5}}$, where \vec{a} is a constant vector.
26. $\vec{V}=2 x z^{2} \hat{i}-y z \hat{j}+3 x z^{3} \hat{k}$ and $\phi=x^{2} y z$, then find
(a) $\operatorname{curl}(\phi \bar{V})$
(b) curl $\operatorname{curl} \vec{V}$.
N.B. : Students have to complete submission of their Answer Scripts through E-mail Whatsapp to their own respective colleges on the same day date of examination worng submission (at in exam. University / College authorities will not be hel submit multiple copies of the same answer proper address). Students are strongly advised not to submir mulnple cop script.

